Complementarity of Dark Matter Direct Detection Targets

We (i.e. Miguel Pato, Laura Baudis, Roberto Ruiz de Austri, Louie Strigari, Roberto Trotta, and myself) have posted a new paper on the arXiv today, that deals with the complementarity of different Dark Matter direct detection targets. In this paper, we  investigate the reconstruction capabilities of Dark Matter mass and spin-independent cross-section from future ton-scale direct detection experiments using germanium, xenon or argon as targets. Adopting realistic values for the exposure, energy threshold and resolution of Dark Matter experiments which will come online within 5 to 10 years, the degree of complementarity between different targets is quantified. We investigate how the uncertainty in the astrophysical parameters controlling the local Dark Matter density and velocity distribution affects the reconstruction. For a 50 GeV WIMP, astrophysical uncertainties degrade the accuracy in the mass reconstruction by up to a factor of $\sim 4$ for xenon and germanium, compared to the case when astrophysical quantities are fixed. However, combination of argon, germanium and xenon data increases the constraining power by a factor of $\sim 2$ compared to germanium or xenon alone. We show that future direct detection experiments can achieve self-calibration of some astrophysical parameters, and they will be able to constrain the WIMP mass with only very weak external astrophysical constraints.


The abstract can be found here, or you can directly download the PDF.

The moment of Truth for WIMP Dark Matter

The most promising candidates for the mysterious Dark Matter are new particles called WIMPs (for Weakly Interacting Massive Particles). In a recent article published on Nature, I argue that the moment of truth has come for these particles, for we will either discover them, or we will inevitably witness the decline of the ‘WIMP paradigm’.

Here is the abstract of the version posted on the arXiv.
We know that dark matter constitutes 85% of all the matter in the Universe, but we do not know of what it is made. Amongst the many Dark Matter candidates proposed, WIMPs (weakly interacting massive particles) occupy a special place, as they arise naturally from well motivated extensions of the standard model of particle physics. With the advent of the Large Hadron Collider at CERN, and a new generation of astroparticle experiments, the moment of truth has come for WIMPs: either we will discover them in the next five to ten years, or we will witness the inevitable decline of WIMP paradigm.